
Assembler Language Assembler Language
"Boot Camp""Boot Camp"

Part 2 - Instructions Part 2 - Instructions
and Addressingand Addressing

SHARE 115 in BostonSHARE 115 in Boston
August 2, 2010August 2, 2010

1

IntroductionIntroduction

Who are we?

John Ehrman, IBM Software Group

Dan Greiner, IBM Systems & Technology Group

2

IntroductionIntroduction

Who are you?
An applications programmer who needs to write
something in mainframe assembler?
An applications programmer who wants to
understand z/Architecture so as to better
understand how HLL programs work?
A manager who needs to have a general
understanding of assembler?

Our goal is to provide for professionals an
introduction to the z/Architecture assembler
language

3

IntroductionIntroduction

These sessions are based on notes from a
course in assembler language at Northern
Illinois University

The notes are in turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

4

IntroductionIntroduction

The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

ASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

5

IntroductionIntroduction

Both ASSIST and ASSIST/I are in the public
domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

Everything we discuss here works the same
in z/Architecture

Both ASSIST and ASSIST/I are available at
http://www.kcats.org/assist

6

IntroductionIntroduction

ASSIST-V is also available now, at
http://www.kcats.org/assist-v

Other materials described in these sessions
can be found at the same site, at
http://www.kcats.org/share

Please keep in mind that ASSIST, ASSIST/I,
and ASSIST-V are not supported by Penn
State, NIU, NESI, or any of us

7

IntroductionIntroduction

Other references used in the course at NIU:
Principles of Operation (PoO)
System/370 Reference Summary
High Level Assembler Language Reference

Access to PoO and HLASM Ref is normally
online at the IBM publications web site

Students use the S/370 "green card" booklet
all the time, including during examinations
(SA22-7209)

8

Our Agenda for the WeekOur Agenda for the Week

Assembler Boot Camp (ABC) Part 1:
Numbers and Basic Arithmetic (Self Study)

ABC Part 2: Instructions and Addressing
(Monday - 11:00 a.m.)

ABC Part 3: Assembly and Execution;
Branching (Tuesday - 9:30 a.m.)

ABC Lab 1: Hands-On Assembler Lab Using
ASSIST/I (Tuesday - 6:00 p.m.)

9

Our Agenda for the WeekOur Agenda for the Week

ABC Part 4: Program Structures; Arithmetic
(Wednesday - 9:30 a.m.)

ABC Lab 2: Hands-On Assembler Lab Using
ASSIST/I (Wednesday - 6:00 p.m.)

ABC Part 5: Decimal and Logical Instructions
(Thursday - 9:30 a.m.)

10

Today's AgendaToday's Agenda

Basic z/Architecture and Program Execution

General-Purpose Registers; Addressing
using a Base Register and a Displacement

Basic Instruction Formats

Some Conventions and Standards

A Complete Program

11

Basic z/Architecture Basic z/Architecture
and Program Executionand Program Execution

12

There's more to a computer than just memory

We need to understand the architecture in
order to understand how instructions execute

We will need to understand how instructions
execute in order to understand how programs
accomplish their goals

Assembler Language provides the capability to
create machine instructions directly

z/Architecturez/Architecture

13

In addition to memory, there are (at least):

A Central Processing Unit (CPU)

A Program Status Word (PSW)

Sixteen general-purpose registers

Floating-point registers

Many other elements beyond our scope

z/Architecturez/Architecture

14

One of the characteristics of z/Architecture is
that programs and data share the same
memory (this is very important to understand)

The effect is that
Data can be executed as instructions
Programs can be manipulated like data

Common, Shared Memory for Common, Shared Memory for
Programs and DataPrograms and Data

15

This is potentially very confusing

Is 05EF16 the numeric value 151910 or is it an
instruction?

It is impossible to determine the answer
simply by inspection

Then how does the computer distinguish
between instructions and data?

Common, Shared Memory for Common, Shared Memory for
Programs and DataPrograms and Data

16

The Program Status Word (PSW) always has
the memory address of the next instruction to
be executed

It is this fact which defines the contents of that
memory location as an instruction

We will see the format of the PSW in Part 4,
but for now, we look at how it is used to
control the execution of a program (a
sequence of instructions in memory)

Common, Shared Memory for Common, Shared Memory for
Programs and DataPrograms and Data

17

In order to be executed by a CPU, an
assembler language program must first have
been
1. Translated ("assembled") to machine language

"object code" by the assembler
2. Placed ("loaded") into the computer memory

Once these steps are complete, we can begin
the execution algorithm

The Execution of a ProgramThe Execution of a Program

18

Step 1 - The memory address of the first
instruction to be executed is placed in the
PSW

Step 2 - The instruction pointed to by the PSW
is retrieved from memory by the instruction
unit

Step 3 - The PSW is updated to point to the
next instruction in memory

The Execution of a ProgramThe Execution of a Program

19

Step 4 - The retrieved instruction is executed

If the retrieved instruction did not cause a Branch
(GoTo) to occur, go back to Step 2

Otherwise, put the memory address to be
branched to in the PSW, then go back to Step 2

This leaves many questions unanswered (How
does the algorithm stop?) but provides the
basic ideas

The Execution of a ProgramThe Execution of a Program

20

General-PurposeGeneral-Purpose
Registers and Registers and

Base-DisplacementBase-Displacement
AddressingAddressing

21

General-Purpose RegistersGeneral-Purpose Registers
z/Architecture has sixteen General Purpose
registers

Each register is 64 bits in size

Each register is identified by a unique
number: 0, 1, ..., 15 (0-F in hexadecimal)

Registers have faster access than memory,
and are used both for computation and for
addressing memory locations

22

Base-Displacement AddressingBase-Displacement Addressing

Recall that every byte of a computer's
memory has a unique address, which is a
non-negative integer

This means that a memory address can be
held in a general purpose register

When it serves this purpose, a register is
called a base register

23

Base-Displacement AddressingBase-Displacement Addressing

The contents of the base register (the base
address of the program) depends on where in
memory the program is loaded

But locations relative to one another within a
program don't change, so displacements are
fixed when the program is assembled

24

Base-Displacement AddressingBase-Displacement Addressing
z/Architecture uses what is called
base-displacement addressing for many
instruction operands

A relative displacement is calculated at
assembly time and is stored as part of the
instruction, as is the base register number

The base register's contents are set at
execution time, depending upon where in
memory the program is loaded

25

Base-Displacement AddressingBase-Displacement Addressing

The sum of the base register contents and the
displacement gives the operand's effective
address in memory

For example, if the displacement is 4 and the
base register contains
00000000 0000007C, the operand's effective
address is 000080 (written intentionally as 24
bits)

26

Base-Displacement AddressingBase-Displacement Addressing

When an address is coded in
base-displacement form, it is called explicit
(we will see implicit addresses shortly)

When coding base and displacement as part
of an assembler instruction, the format is
often D(B), depending on the instruction

D is the displacement, expressed as a decimal
number in the range 0 to 4095 (hex 000-FFF)
B is the base register number, except that 0
means "no base register," not "base register 0"

27

Base-Displacement AddressingBase-Displacement Addressing

Some examples of explicit addresses:
4(1) 20(13) 0(11)

In 0(11), the base register gives the desired
address without adding a displacement

When the base register is omitted, a zero is
supplied by the assembler

So coding 4 is the same as coding 4(0)

28

Base-Displacement AddressingBase-Displacement Addressing

Some instructions allow for another register to
be used to compute an effective address

The additional register is called an index
register

In this case, the explicit address operand
format is D(X,B) (or D(,B) if the index register
is omitted)

D and B are as above
X is the index register number

29

Base-Displacement AddressingBase-Displacement Addressing

For example, 4(7,2) is computed as an
effective address by adding 4 plus the
contents of index register 7 plus the contents
of base register 2

Again, 0 means "no register" rather than
"register 0"

This applies to the index register position of an
RX instruction (just as for the base register
position) in any instruction that has one

30

Base-Displacement AddressingBase-Displacement Addressing

We will see next how the assembler encodes
instructions, converting them to a string of bits
called object code

As a preview, for D(B) format operands the
conversion is to hBhDhDhD, thus taking two
bytes (each h represents a hex digit, two per
byte)

31

Base-Displacement AddressingBase-Displacement Addressing
This explains why the displacement DDD is
limited to a maximum of 4095 (hex FFF)

Some recent instructions are called "relative"
instructions and need no base register, and
some use 20-bit displacements

These are beyond our scope

Also beyond our scope are instructions which
use all 64 bits of a register

32

A Note on 64-bit RegistersA Note on 64-bit Registers

All sixteen registers in z/Architecture are 64
bits long (two fullwords)

The first (left) fullword has bits 0-31
The second (right) fullword has bits 32-63

The second fullword is the only one we will
see for the rest of the week

It is the only one referenced by the instructions
we will see
So, from this point on, only the second fullword
will be shown

33

Basic Instruction Basic Instruction
FormatsFormats

34

Instruction FormatsInstruction Formats
The process of "assembling" includes
encoding programmer-written symbolic
instructions

These are then converted by the assembler to
machine instructions (which are strings of bits)

The assembler can also create data areas as
part of a program

35

Instruction FormatsInstruction Formats

A program is a combination of instructions
and data areas whose relative locations are
fixed at assembly time

This point is very important to understand - it
is part of what makes assembler language
difficult to learn

Assembler language has no "variables," just
data areas

36

Instruction FormatsInstruction Formats

There are five basic machine instruction
formats we will need to understand

They are similar, but different in their
operands

Each machine instruction requires 2, 4, or 6
bytes of memory (usually referred to as 1, 2,
or 3 halfwords because all instructions are
halfword aligned)

37

Instruction FormatsInstruction Formats

Each machine instruction that we will see
begins with a one-byte operation code

The five formats are named according to the
types of operand each has

38

Instruction FormatsInstruction Formats

RR - Register-Register
Occupies one halfword and has two operands,
each of which is in a register (0 - 15)

RX - Register-indeX register
Occupies two halfwords and has two operands;
the first is in a register, the second is in a
memory location whose address is of the form
D(X,B)

39

Instruction FormatsInstruction Formats

RS - Register-Storage
Occupies two halfwords and usually has three
operands: two register operands and a memory
address of the form D(B)

SI - Storage-Immediate
Occupies two halfwords and has two operands:
a byte at memory address D(B) and a single
"immediate" data byte contained in the
instruction

40

Instruction FormatsInstruction Formats

SS - Storage-Storage
Occupies three halfwords and has two memory
operands of the form D(B) or D(L,B); each
operand may have a length field - this depends
on the specific instruction

There are variations of these formats,
including many less frequently executed
operations whose op codes are two bytes
long instead of one

41

RR InstructionsRR Instructions
Our first machine instruction is type RR and
will add the contents of two registers,
replacing the contents of the first register with
the sum

This instruction is called ADD, and is written
symbolically as AR R1,R2

An example is AR 2,14 which adds the
contents of register 14 to the contents of
register 2; the sum replaces the contents of
register 2

42

RR InstructionsRR Instructions
Note that the "direction" of the add is right to
left; this is a consistent rule for all but a few
instructions

The assembly process will convert the
mnemonic AR to the operation code 1A

It will also convert each of the two register
values to hexadecimal (2 and E)

43

RR InstructionsRR Instructions
The instruction would then be assembled as
the machine instruction 1A2E at the next
available location in the object code

In bits this is: 0001101000101110

All RR instructions assemble as hOPhOPhR1hR2

Another instruction is SUBTRACT, which is
written symbolically as SR R1,R2

44

RR InstructionsRR Instructions
For example, SR 2,14 would subtract the
contents of R14 from R2, replacing the
contents of R2 with the difference

Note the "Rn" shorthand convention for
"register n"

The op code for SR is 1B

Both ADD and SUBTRACT can cause
overflow - we must be able to cope with this

45

RR InstructionsRR Instructions

Our final (for now) RR instruction is LOAD,
written symbolically as LR R1,R2

The contents of the first operand register are
replaced by the contents of the second
operand register (R2 contents are unchanged)

The op code for LR is 18

LOAD cannot cause overflow

46

RR InstructionsRR Instructions
Exercises:

Encode AR 1,15 and SR 0,0
Decode 1834

If c(R0) = 001A2F0B, c(R1) = FFFFA21C,
and c(R6) = 000019EF for each instruction:

After LR 6,0, c(R6) = ?
After AR 1,6, c(R1) = ?
After SR 1,6, c(R1) = ?

 001A2F0B, FFFFBC0B, FFFF882D
47

RX InstructionsRX Instructions
This format has a register operand and a
memory address operand (which includes an
index register - thus, the "RX" notation)

The RX version of LOAD is L R1,D2(X2,B2)
which causes the fullword at the memory
location specified by D2(X2,B2) to be copied
into register R1, replacing its contents

Note: the mnemonics (LR and L) determine the
format (RR vs RX) of the instruction

48

RX InstructionsRX Instructions
Although z/Architecture doesn't require it, the
second operand's effective address should
also be on a fullword boundary
(thus ending in ...0, ...4, ...8, or ...C)

This is a good habit, and ASSIST/I does
require it

The encoded form of an RX instruction is:
hOPhOPhR1hX2 hB2hD2hD2hD2

49

RX InstructionsRX Instructions
The opcode for LOAD is 58, so the encoded
form of L 2,12(1,10) is 5821A00C

The reverse of LOAD is STORE, coded
symbolically as ST R1,D2(X2,B2), and
which causes the contents of R1 to replace
the contents of the fullword at the memory
location specified by D2(X2,B2) (violates the
"right to left" rule of thumb)

The opcode for ST is 50
50

RX InstructionsRX Instructions

Exercises:
Encode ST 2,10(14,13)
Decode 5811801C

If c(R2) = 000ABC10, c(R3) = 0000000B,
and c(R4) = 000C1F11, what is the effective
address of the second operand?

L 0,16(,2)
ST 15,20(3,4)
L 8,0(2,4)

51

RX InstructionsRX Instructions

We have seen two RR instructions, AR and
SR (ADD and SUBTRACT)

Each has an RX counterpart
 A R1,D2(X2,B2) [ADD]

 S R1,D2(X2,B2) [SUBTRACT]

We now have almost enough instructions for
a complete program

52

Some Coding Some Coding
Conventions and Conventions and

StandardsStandards

Assembler
Statement Coding
Conventions and

Program Entry and
Exit Rules

53

Coding Assembler StatementsCoding Assembler Statements

Recall the two ways we can view an
instruction

Symbolic: AR 3,2
Encoded: 1A32

The encoded form is easily the most
important

"Object Code - Nothing Else Matters"

But we write programs using the symbolic
form

54

Format of a Symbolic InstructionFormat of a Symbolic Instruction
Label (optional)

Begins in Column 1
1 to 63 characters (1 to 8 in ASSIST/I)
First character is alphabetic
Other characters may be 0 - 9 (or _ , except in
ASSIST/I)

Mixed case not allowed in ASSIST/I

55

Format of a Symbolic InstructionFormat of a Symbolic Instruction
Operation code mnemonic (required)

May begin in column 2 or after label (at least one
preceding blank is required)
Usually begins in column 10

Operands (number depends on instruction)
Must have at least one blank after mnemonic
Separated by commas (and no blanks)
Usually begins in column 16

56

Format of a Symbolic InstructionFormat of a Symbolic Instruction
Continuation (Optional)

Non-blank in column 72 means the next
statement is a continuation and must begin in
column 16!
Also, columns 1 - 15 of the next statement must
be blank

57

Format of a Symbolic InstructionFormat of a Symbolic Instruction
Line comments (Optional)

Must have at least one blank after operands
Usually begin in column 36, cannot extend past
column 71
Some begin the comment with // or ; to be
consistent with other languages

Comment Statements
Asterisk (*) in column 1 means the entire
statement is a comment
These also cannot extend past column 71

58

Assembler Instructions (Directives)Assembler Instructions (Directives)
In addition to symbolic instructions which
encode to machine instructions, there are also
assembler instructions or directives which tell
the assembler how to process, but which may
not generate object code

The CSECT instruction (Control SECTion) is
used to begin a program and appears before
any executable instruction

 label CSECT

59

Assembler Instructions (Directives)Assembler Instructions (Directives)
The END instruction defines the physical end
of an assembly, but not the logical end of a
program

 END label

The logical end of our program is reached
when it returns to the program which gave it
control

60

Assembler Instructions (Directives)Assembler Instructions (Directives)
The DC instruction reserves storage at the
place it appears in the program, and provides
an initial value for that memory

 label DC mF'n'
where m is a non-negative integer called the
duplication factor, assumed to be 1 if omitted
Generates m consecutive fullwords, each with
value n

IBM calls DC "define constant" but a better
choice is "define storage with initial value"

61

Assembler Instructions (Directives)Assembler Instructions (Directives)
What's generated by TWELVES DC 2F'12'

 0000000C0000000C

There are many other data types besides
fullword F

A variation is provided by the DS (Define
Storage) instruction, which also reserves
storage but does not give it an initial value (so
contents are unpredictable)

62

Entry ConventionsEntry Conventions
There are two registers which, by convention,
have certain values at the time a program
begins

Register 15 will have the address of the first
instruction to be executed

63

Entry ConventionsEntry Conventions
Register 14 will have the address of the
instruction to be given control when execution
is complete

To get there, execute a "branch":
 BCR B'1111',14
This instruction will be explained shortly

64

A Complete ProgramA Complete Program

65

A Complete ProgramA Complete Program

This is the first demo program in the materials
provided for these sessions

It has only five executable instructions and
reserves three fullwords of storage for data,
the first two of which have an initial value

In the next session we will analyze the
program thoroughly, but for today, we end
with just a list of the assembler statements

66

* This program adds two numbers that are taken
* from the 5th and 6th words of the program.
* The sum is stored in the 7th word.
ADD2 CSECT
 L 1,16(,15) Load 1st no. into R1
 L 2,20(,15) Load 2nd no. into R2
 AR 1,2 Get sum in R1
 ST 1,24(,15) Store sum
 BCR B'1111',14 Return to caller
 DC F'4' Fullword initially 4
 DC F'6' Fullword initially 6
 DS F Rsrvd only, no init
 END ADD2

First Demo Program (w/comments) First Demo Program (w/comments)
[demoa.asm][demoa.asm]

67

 LOC OBJECT CODE SOURCE STATEMENT

000000 ADD2 CSECT
000000 5810 F010 L 1,16(,15)
000004 5820 F014 L 2,20(,15)
000008 1A12 AR 1,2
00000A 5010 F018 ST 1,24(,15)
00000E 07FE BCR B'1111',14
000010 00000004 DC F'4'
000014 00000006 DC F'6'
000018 DS F

 END ADD2

First Demo Program, AssembledFirst Demo Program, Assembled

68

A Complete ProgramA Complete Program

Now that we have assembled the program,
What does that stuff on the left mean?
How did we get there?
And what do we do with it, now that it's
assembled?

Tune in tomorrow!

69

